Example 3:        y = x + 3
                              
To find the x-intercept, substitute the value for 0 to solve for x.   
       Tutorial               Lessons              Quiz
Some Helpful Tools

Lessons:  click here

Math Homepage:  click here
The x-intercept intercepts the x-axis.  

The y-intercept intercepts the y-axis.

An intercept involves an equation, which requires finding two different solutions for the coordinates of the x-intercept and the y-intercept.  

Once you have found your solutions, you will be able to do the following:
  • plot your points
  • draw a line to connect the points

When finding a solution to an equation, no matter where you are on the x-axis, the value for y will always be 0.  

Also, no matter where you are on the y-axis, the value for x will always be 0.  

The reason is because the axis lines intersect at (0,0).  So the x-axis is always 0 while the y-axis is also always 0. These values will always stay constant.

This section will cover the fundamentals and rules of an intercept. 
The X-Intercept and the Y-Intercept
Finding Coordinates
Example 1:         y = x - 2

To find the x-intercept, substitute the y value for 0 to solve for x.  

                0 = x - 2
               +2      +2
                2 = x              (2, 0)

Next, find the y-intercept.  Substitute the x value for 0 to solve for y.  

                     y = x - 2
                     y = 0 - 2
                     y = -2           (0, -2) 
                                 
Now that you have both of your x and y coordinates, plot them in the coordinate plane.  

Linear equations will usually have many solutions of ordered pairs to plot in a coordinate plane. Intercepts have two solutions (one for the x-intercept and one for the y-intercept). 
The x-intercept is (2,0). The y-intercept is (0,-6). 
The x-intercept is (-3,0). The y-intercept is (0,3). 
When you look at an intercept, you are looking at a line that crosses or intersects another line.  


Math: Intercepts - Tutorial